
D-Ai35 632 SIGNAL DETECTION FOR SAME SHAPE FAMILIES OF /
NON-HOMOGENEOUS POISSON PROCESSES(U) SAN DIEGO STATE
UNIV CA DEPT OF MATHEMATICAL SCIENCES R LUI ET AL.

UNCL7SSIFIED SEP 83 4-83 N00914-80-C-0208 F,'G 12/1 N



- .....

'St

'Sl

1111Q1. 1 L.
MII Wo IH36

m~.0

*11111L2 11-6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

..- o ...- -. - - -:.*o. .. -.- ... . . . . . . .. . - - . . . . . . . . .. . .. . .. . .-.



S IGNAL DETECTION FOR SAM4E-SHAPE FAMILIES

OF NON-HOMOGENEOUS POISSON PROCESSES

Roger Lui, C. B. Bell, Lloyd Gavin
Joseph Moser, and Edward Pugh

93 o -.



REPORT oOC1JE)4TATICA PAGE 8XVO"COL9MI, OR
11- 111POT VIVIIIIIS 4-8 A9 Lvh~ A aSOPIGA"CATA&OO msua@4R

4-8

Signal Detection for Same-Shape Families of Technical
Non-homogeneous Poi sson Processes 7-6"ANs R&npn

V. AIgWIoAle IL CONTRACT ON 4=7u ounm3.

Roger Lui, C. B. Bell, Lloyd Gavin, Joseph N01-OC00
Moser, and Edward Pugh NO1-0C00

06 03*PORMIN6 O@AUIZATION NAA9 AnD AGONUSS 146 m l 8EY 3ag. -

A A 4N umIIA IUMUNS4

San Diego State University
San Diego, CA 92182

I LI COuT4.gzNO OICB mAM& AD AGOAE la. 06POT *Ara

Offie ofNava ResarchSeptember 1983

ArlingtonVA_2221 32
146WOITAING A4C *AMC 4 A00UR1 O 4.JflfEsfq -C. '=~ Masa 116 5SUCUINV C.AS& (09 W o w*

Unclassified

*Approved for public release; distribution unlimited.

* I? *Smu~l. "AT""E? (Of4 a mom, .E I. *I.1 14ae. a itEIW R4*mEJ

SIL 1EV "OO (Cnbmed MV0 fildme U1 0006M d.ad~ 1~11 aWt Wak ftaw

Poisson process; non-homogeneous, nuisance parameter; class-fit; goodness-of-
fit; mean function; pure noise; Neymart-Barton; Kolmdgorov-Smirnov; min'Imal
sufficient statistic; censoring; sampling.

2LN L9IUAG? ICMOM dmwine agto0 pmd IN inE.or age" 517 AM-

* Non-Gaussian signal detection proble-ns are treated in the context of same-
shape families of non-homogeneous Poisson processes. The ratio of mean
functions of two processes in such a family is a constant. Five different
signal detection problems and five different sampling protocols are considered.
Optimal procedures based on minimal sufficient statistics are developed.

00 a VIP 43 a,.ovmvasos~r Unclassified



..

4-83

SIGNAL DETECTION FOR SAME-SHAPE FAMILIES

OF NON-HOMOGENEOUS POISSON PROCESSES

Roger Lui, C. B. Bell, Lloyd Gavin
Joseph Moser, and Edward Pugh

jq

.4'

.4..T

4.,,,

.4

i , r . ,z -t 4(' .."

,," {~~fr i'j t 1lir : ' y* r



SIGNAL DETECTION FOR SAME-SHAPE FAMILIES

OF NON-HOMOGENEOUS POISSON PROCESSES

Roger Lui*, C. B. Bell, Lloyd Gavin**, Joseph Moser, and Edward Pugh

0. Introduction and Summary

Among the non-Gaussian signal detection models, the models

associated with non-homogeneous Poisson processes (NHPP's) are

perhaps the most applicable and most tractable.

This paper concerns same-shape families of NHPP's, that is,

families for which the ratio of any two mean functions is a constant.

One such family is, of course, the family of homogeneous Poisson

processes (HPP's). Another such family is the set of all NHPP's

with mean functions of the form u(t) = 8 in (1 + 3t), where 8 > 0.

In general, one is concerned with G(u0 ), which contains all NHPP

laws with mean functions of the form P(t) = 8 Po(t), where 0 > 0.

For each such family, five different signal detection problems

are considered. In each problem the pure noise (PN) situation is

specified, and any data which indicates that something other than

the specified situation has occurred, leads to the conclusion that

some signal is present, i.e., one has a noise-plus-signal (N+S)

situation.

These five signal detection problems are as follows.

Problem A PN: X Q(P o

-' (Goodness-of-fit with nuisance parameter or class-fit)

* Worcester Institute of Technology
** California State University, Sacramento

This research was principally supported by the Office of Naval Research
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Problem B PN: e £(I o ) and P(.) = o o(')

(Goodness-of-fit)

* Problem C PN: 1 4 2 (C 2(uotl

(2-sample problem)

Problem D PN: Ic Q(uo) and ui( ') = o2 ( " )

(modified 2-sample problem)

Problem E E. Q(Po) and 1 = 2 = .-. =4

(c-sample problem)

For each of these (non-Gaussian) signal detection problems, one

considers five different data collection schemes or sampling plans.

At least one detection rule is developed for every one of these

25 sampling-plan-problem combinations.

Section 1 introduces the notation, distributions, etc. Section 2

treats the sampling plans and their associated likelihood functions.

Sections 3, 4, 5, 6, and 7 treat detection problems A, B, C, D and E,

respectively. Finally, in the appendix, numerical illustrations of

each technique are given.

'.T . ......
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1. Statistical Preliminaries

Most of the distributions and concepts employed in this paper

are fairly standard. However, it is worthwhile to give the more

common notation and abbreviations one will encounter.

-1.1 Notation

(1) MSS = minimal sufficient statistic

(2) MLE = maximum likelihood estimate

(3) MVUE = minimum variance unbiased estimate

(4) LHR = likelihood ratio

(5) GOF - goodness-of-fit

(6) HPP = homogeneous Poisson Process

(7). NHPP - non-homogeneous Poisson Process

(8) ff = pure noise

= (9) N4S - noise plus signal

(10) K-S - Kolmogorov-Smirnov

(11) ~\ .Neyman-Barton
(12) 9("o) = the family of laws of NHPP's with mean functions

of the form (.) = uo(" )

1.2 Methodology. The paper concerns NHPP's and inference relative

to their parameter values. The situation is that when there is PN (pure

noise), the parameter is in a certain range of values and when there is

signal present, i.e., the N+S case, the parameter is in some other

range of values.

A'

IL
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This being the case, one will be concerned with MSS's (minimal

sufficient statistics) for the parameters, as well as MLE's

(maximum likelihood estimates) and MVUE's (minimum variance unbiased

estimate).

The detection procedures will be based on reducing the detection

*, problems to GOF (goodness-of-fit), 2-sample, and c-sample statistical

*problems. The GOF problems will be treated with K-S (Kolmogorov-

Smirnov) and n-6 (Neyman-Barton) type statistics. (See Section 1.3

below) For the 2-sample and c-sample problems, the detection pro-

cedures will be LHR (likelihood ratio) procedures, or conditional

procedures.

For each of the detection problems, the number of possible

procedures is quite large. In this paper, only one or two procedures

-. is given for each problem. These procedures were chosen on the basis

' of optimality and simplicity. Some of the references in the

bibliography contain alternate statistical technicnes which can be

adapted to signal detection.

1.3 StatisticalDistributions. The signal detection models

considered in this paper involve only NHPP's. However, ror each of

the detection problems five different sampling plans are considered--

Plan A (Type I Censoring);

Plan B (Type II Censoring);

2 Plan C (Regular Sampling);

Plan D (Equal-Distance Sampling); and

Plan E (Same-Shape Sampling).
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A variety of standard statistical distributions come into play.

They are as follows:

(1) Exp(A) = Exponential distribution with mean X

(2) Po(A) = Poisson distribution with mean X

(3) X2  
= Chi-square distribution with "m" degrees of

m freedom

(4) Ge(p) = Geometric distribution with parameter p

(5) U(Ole) = Uniform distribution on (0,e)

(6) r(n,A) = Ganmm distribution with parameters n and A

(7) B(m,p) = Binomial distribution with parameters m and p

(8) F(m,k) = Fisher's F-distribution with m and k degrees of
freedom, respectively

(9) N-B(k,p) = Negative Binomial distribution with parameters
k and p

(10) £(.) = the one-point distribution with all probability
at 0, i.e. c(u) - 1 for u > 0; = 0 for u < 0.

Besides the distributions above, one will be concerned with several

distributions based on random samples, XI, ..., Xm i.i.d. G(.), with

order statistics X(i), ..., X(m).

(a) G-O-S(m) = the distribution of the vector [X(l), ..., X(m)I

(b) U-O-S(m.) = the distribution above when G = U(0,1)

(c) EDF = empirical distribution function,

Fn(z) = m- I  e(z - Xj) and c(.) is as in (10) above.

This is a mixture of one-point distributions.

(d) K-S(m) = the distribution of the Kolmogorov-Smirnov
statistic D(G,m) = sup I Fm(z) - G(z)l.

Z

(e) t-Ok) = the (exact) distribution of the Neyman-Barton

statistic (V - ii) -i (V - P)', where

-1 -Vk[ 'lV [Vl , 72,

- k+l -

with ir = k E xr and = (ars) , with
5' i

9 r~rs= rs ((r+l)(s+l)(r+s+l)]l.

.- ,ji m' .,,, - .-.- ,- .-. .-- . .".-.-..-.-.- - ... - . . - .-. - . - . . . . .. . . . . .5-.
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[This distribution is asymptotically Xk.

For each of these distributions one writes, e.g., X G, to

indicate that G is the distribution of X; and [YI, .. , Ym]~ G-O-S(m),

when the vector has the distribution in (a) above.

One now introduces the five sampling plans for dealing with the

NHPP's. Several of these plans are "natural." For example, it is

often necessary (for a variety of reasons) to stop sampling at some

fixed time T*, or to stop after the occurrence of some fixed number

of events.

Other times, it is desirable to sample in such away that certain

distributional and computational difficulties are surmounted. Such

is the case with equal-distance and same-shape sampling.

All of these plans, their associated likelihood functions, MSS's

and MLE's are treated in the next section.

*e. . .- .. - -
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2. Sampling Plans, Likelihood Functions MLE and MSS's

Five different sampling plans will be considered.

2.1 Sampling Plan A: Type I Censoring. The stopping rule

here is: Stop a time T*. The data is then,

SZ = [k, WI, ..., Wk]

where k = N(T*). It is well known that

Theorem 2.1.1 Conditionally, given N(T*) = k,

(a).W = [wl, ..., Wk] - Guo-O-S(k),

whereGt) = (t) for 0O< t < T*, and
((TT(b Uo(a o (wk) -Sk)

.' " , (b) [ Uo(T*), -.. vo(T*)]-UOSk)

(c) Further, the likelihood function is

k k

L(z) = L(w N(T*) = k) p{ N(T*) = k} = 8k [k0 (wj)] exp { - 8o(T*)
1

From the likelihood function, one derives the followiqg.

Theorem 2.1.2 (a) The MSS for 8 is N(T*) ~ Po(suo(T*)).

(b) The MLE of 0 is = (T*) anduo(T*)

(c) E(8) = 8 and V(8) =
po(T*)

The signal detection methodology for this sampling plan will employ

the previous two theorems.

2.2 Sampling Plan B: Type II Censoring

The stopping rule here is: Stop at WN, the Nth waiting time.

The data is, then, W = [WI, ..., WN].

The principal distribution theorem is analagous to Theorem 2.1.1 above.

-1 -. Z A-! -I- '-5-- 1 '1~. *- . - . - - .- -
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Theorem 2.2.1. (a) Conditionally, given Wn =w,

W~  = [WI , WN-1 ] ~ Guo-O-S(N-l), and
4P,

%,ru(W) o( _:- (b) [Uo(Wn) , ... , 1o(-n) I - U-O-S(N-I).

(c) Further, the likelihood function is

L (w) = L(Wl, ... , WN-lI WN = w*) fwN (w*)

N [N
i= 811 ["' (Wj)] exp{ o(W*)}

1

Employing the likelihood function, one obtains

Theorem 2.2.2 (a) The MSS of 8 is po(Wn) ~ r(N,8).

- Further, 28,o(WB[) - X2
-=2 N•ihE8 L

(b) The MLE of 8 is 0 = N with E(S)=1o(WN) N-1

and V(S) = (N_1)2 (N-2)

(c) The UMVUE of 8 is 8* ( N =, with

E(B*) = 8 and V(O*) = 82
N -2

The signal detection procedures for this sampling plan will

primarily be based on the two preceding theorems.

.4* p2.3 Sampling Plan C: Regular Sampling. Here, one observes

the process at times A, 2A, ..., kA, and the data is Y = [YI, -,Yk

where Y1  = N(A), Y2  = N(2A) - N(A), ... Yk = N(kA) - N(k-1]A).

The basic distribution results are as follows:

% Theorem 2.3.1 (a) YI, • , Yk are independent.

(b) Yj - Po(bjB), where bj = uo(JA) - uo([J-l]A), for j = 1, 2, ... , k.

A' "..".-.€.." """ . -". ", '"""""- - """" "-- ..- " "- "'" "- -" ' 'iJ . '
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(c) The likelihood function is

L(Y) = 8kN(kA) [ b b/Y ] yJ exp {- 8io(kA)}
1 1

One uses the likelihood function to establish

Theorem 2.3.2 (a) The MSS for 8 is N(kA) - Po(Buo(k)

(b) The MLE of 8 is 8 =

(c) E(8) = 8 and V(i) =

As is usual, these last two theorems form the basis for the

signal detection procedures for regular sampling.

2.4 Sampling Plan D: Equal-Distance Sampling. In this sampling

plan one observes N(tl), N(t2 ), ..., N(tk) where Uo(tr) = r uo(tl).

The data here is Y = [Y1 , ... , YkJ, where Yr = N(tr) - N(tr-1)

for r = 1, 2, ... , k and to = 0.

The pertinent distribution result is

Theorem 2.4.1 (a) YI, ..., Yk are i.i.d. Po(8uo(tl))

(b) The likelihood function is

Net) k -1
L(y) = [11(t)tk [ yj1] exp {- k0Uo(tl)}.

Immediate consequences are as follows.

Theorem 2.4.2 (r) The MSS for 8 is N(tk) - Po(81o(tk)).

N(tk) N(tk)
(b) The MLE of 8 is 8 = - =k

(c) E(8) = 8 and V(8)

.

::,, ' '., . ,:-:. ..- . ,.- . " -. - ... - . - . .- . , . . - . . . . . - . ,
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These last two theorems will be utilized in constructing the

detection procedures for the equal-distance sampling plan.

The final sampling plan is the same-shape sampling plan adapted

from Basawa and Rao (1980), who were concerned with homogeneous

Poisson Processes (HPP's).

2.5 Sampling Plan E: Same-Shape Sampling. Let {N(t)l , the

NHPP of interest, have mean function pavo(-) and waiting times {Wr},

and let {N*(t)} be an NHPP independent of (N(t)} and having mean

function uo(") and waiting times {W*}

One observes N* = [(W*), ..., N(Wk)] and computes Y [YI , Yk],
- 1 k WoptsY iY,..

Y, -- (w*), Y = N(w *- N(w1), . -Y IV(W*) - N( Y
1 2 k k'l ±9 wkil

It can be readily proved that

Theorem 2.5.1 (a) YI' "..' Yk are i.i.d.' Ge(p) with p - [1 + B]

(b) k = N(W ) N-B(k,p).Z r W

"' (c) The likelihood function

SL~y) = pk qN(W*) = N(Wk)[ + ]k-N(W

L(y) =p q k = k [l1+1 k

It follows that

Theorem 2.5.2 (a) The MSS for 8 is N(Wk*).

N(Wl)
(b) The MLE of a is 8 = - Y.

k
(c) E()B and V() 8(1+8)

k

One is now in a position to develop the various signal detection

procedures.
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The detection rules will be designateu- first, by problem; second,

by sampling plan; and third, by the number. For example, "Detection

Rule B.II.l" refers to the first detection rule for Detection

Problem B with Sampling Plan II; and "Detection Rule C.III.2" refers

to the second detection rule for Problem C and Sampling Plan III.
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3. Signal Detection for Problem A: Class-fit, or Goodness-of-fit

with Nuisance Parameter.

The situation here is that, if there is pure noise, the NHPP law

is in R(Uo), while if signal if present, what is received is governed

by a law not in Q(Uo). One has

PN : Ci a(uo) vs N+S g2 s(1 0 )

The decision procedures, of course, depend on the sampling plan.

3.1 Sampling Plan A (Type I Censoring) Here one stops at time T*,

where N(T*) = k. and computes V=[V I , ... , Vk ] where Vr= 0o(Wr)

Then, as in Theorem 2.1.1, V ' U-0-S(k).

-t PM

Hence, the class-fit problem is now a GOF problem.
1I kj Vnd

*- . One now forms, F*(z) =- E E(z - Vr ) ; and
k k 1r k J

V - (V, V2 , ... , VP], and bases the decision rules on these entities.

Detection Rule A.I.1 Decide N + S iff Dk = sup I F (z) - z I > do<z<l

where d k, ) is the appropriate percentile from a K-S(k) distribution.
(ka

This K-S detection rule is considered an "omnibus" rule in the sense

that it is consistent against "all" alternatives.

Adaptation of the work of Neyman (1937) and Barton (1953) yield

procedures recommended for certain "smooth" N + S situations.

Detection Rule A.I.2 Decide N + S iff

Bp= k (V - _) - (V - i)' > x2(l-a), where a = --- -and
-- p - 2' 3 p+l

)with ars
rs rs = (r+l)(s+l)(r+s+l)V
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The detection procedures are different for different sampling

plans. However, for this detection problem, they are similar for

the first two sampling plans.

3.2 Sampling Plan II (Type II Censoring) The data here is

(W[ig ... ,9 WN , and under PN [V7, V* I.... N 1 N-1O S N-)

where * 

The detection rules here are

Detection Rule A.II.1 Same as Detection Rule 3.1.1 where.

k Is replaced'by N-1 and V's are replaced by V*'s.

Detection Rule A.II.2 Same as Detection Rule 3.1.2, where

V's are replaced by V*'s..

3.3 Sampling Plan il (Regular Sampling) For this sampling

plan, YIl' "' Yk are independent with Y ~ Po(bjO) under PN (See

Section 2.3).

A useful straightforward detection rule is

Detection Rule A.III.1 Decide N + S iff

L 2
k _ __[yj- ]

]"T = E

j1 b-1k l 2

[uc(kA) N(kA)]l b I [yj uo(kA) - bj N(kA)]2 > X2k-i (a).

J=1

For the next sampling plan, the increments yj are i.i.d., and, hence,

the detection procedure is somewhat simpler.

.°. 
.

* 5' . . . . . . . . . .
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3.4 Sampling Plan IV (Equal-Distance Sampling) One recalls

(Section 2.4) that Yl' "' Yk are i.i.d. Po(Svo(tl)), where

Y = N(tr) - N(tr-I), to = 0, and Po(tr) = ro(tj). A

decision rule of interest is then

Detection Rule A.IV.1 Decide N + S iff

k
" 2 T*1'.: "X (l-cz)< T*= (y)- (yj )

k-i J=l

v. k k N(tk) 12
N "~_ Z [N(tr) - N(tr-I)r=l k

Each of these rules is, of course, illustrated by a numerical

example in the appendix.

The final detection rule for this section is based on same-shape

sampling.

3.5 Sampling Plan V (Same-Shape Sampling) For this sampling

plan, under PN the Y's are i.i.d. Ge(p) where p = [1+0] - , and

Y = N(W*) - N(Wr*_I ) with Wo = 0. (See Section 2.5)

Following usual procedures one develops

Detection Rule A.V.I Decide N + S iff

s+1 rn-2 2
Es [nr k (Cr)] 2" r=l

rkp(Cr)

Here, {AI, ..., AS) are integers satisfying A = 0 < AI < A2

< ... < A < *. Then, one chooses C = {1 + A , 2 + A , .. A rfor s r Ar-l Ar-l " " 2 r
". " for 1 <r < s, and C+ -- {As, 2 + As, . .. }I

%s:
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Let nr = the number of Y's in C, and

(p l+r- )-(Y
l +A  for 1 < r < s(r) 1 +Y 1+Y- l+- +A

and i(Cr) - .+ Yl1 r (r _

r+1 1+7y lJY

{C ... , C+I constitute a partition of the non-negative

1' s+l

integers, and there are many such partitions. The partition which

will be used in the numerical examples of the appendix is as follows:

1= {0,5,1,155... C = {1,6,11,16,...} ; C' = {2,7,12,17,...}

C' = (3,8,13,18 .... and C' = {49,9,14,19,.. .
4 5

-)r-1 i)5]-1Here, (Cr  p(q) (q ] for r = 1, ... , 5, where

'(17y 1 -1
p andql i- p.

One turns now to the second detection problem.

6

St

- * .. .. t.-.-
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14. Signal Detection for Problem B: Goodness-of-Fit

The PN case here entails the stochastic process law to be completely

known, i.e. to be a NHPP law with mean function p~(-) satisfying

IA(t) = Bopio(t); given that ~e: SI(iz0).

PN : ( O ou'o(*) vs. N+S : 6) o'o(')

The problem here is to decide whether or not 0

4.1 Sampling Plan I (Type I Censoring) Under PN (Section 2.1) the

MSS for 8 is N(T*)', Po(6ohuo(T*)). The detection rule, then is

Detection Rule B.I.J. Decide N + S iff N(T*) < a 1 or N(T*) > a 2,

1 e - r e -A Xr a with X = o po(T
where E ~

r0O ra 2

In practice, one would probably wish to choose a and a2 to have

approximatel y equal tail probabilities under PN.

Contrary to what was true for Problem A, the detection rule for

Sampling Plan II here is somewhat different from that for Plan I.

4.2 Sampling Plan II (Type II Censoring) One uses the fact that

under PN, 2s o(WN) 2 o construct a reasonable detection rule.

(See Section 2.2)

Detection Rule B.II. Decide N + S iff 2TO*) N) < b or > b2

"- whereb r !b+arer2N

wher b nd bareappropriate percentiles of the )(2' - distribution.

1-2

For the third sampling plan, one makes use of an approximate

chi-square distribution.

9 otayt htwstu o rbe ,tedtcinrl o

4
i.. apigPa6Ihr ssmwa ifrn rmta o lnI

4. apigPa4I(Tp ICnoig neue h atta
'*. . .- * unde PN 2 -~(N ~ 2 . . . . .
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4.3 Sampling Plan III (Regular Sampling) The data in this case

is Y (Y9 ... ,I Y ) where Y = N(rA) - N([r-l]A), with N(O) = 0.
Y 1 .,k r

Further, one recalls (Section 2.3) that under PN Y1 1 ...' Yk are

independent with Yr - Po (br), where br = Po(rA) -o([r-l]A).

One useful detection rule is

Detection Rule B.III.I Decide N + S iff

T Z. (Bo br)-1 [7r - 0o br]2 > ×k2 (1 - a).
r=l k

Another such rule (which employs the MSS for 8) is

k
Detection Rule B.III.2 Decide N + S iff Z Y = N(kA) < a or > a2

*, 1

(as in Detection Rule B.I.l).

The situation is somewhat different for equal-distance sampling.

4.4 Sampling Plan IV (Equal-Distance Sampling) From Section 4.4,

one recalls that P (tr) rtl; Yr = N(tr) - N(tr-1) with N(O) = 0;
0

and that YI' "., Y k are i-.i.d. Po(i O (t l )) under PN, and that

N(tk) is the MSS for 8.

Under such circumstances one constructs
k

Detection Rule B.IV.I Decide N + S iff Z Y - N(tk) < a or > a2
1

(as in Detection Rule B.III.2).

4.5 Sampling Plan V (Same-Shape Sampling) The M-S-S for 8 (Section 2.5)

k -
Z Y = N(Wk), which under PN, - N-B(k,p) for p = [1 + 8o] - 1 .i":._ 1r k

Under these circumstances one employs the detection rule below.

,'.. -. .- .--
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k

Detection Rule B.V.1 Decide N + S iff Z Y = N(W*) < b or > b
1 r k -

where b and b2 are appropriate percentiles of the Negative Binomial

distribution.

This final detection rule as well as the other rules of this section

are illustrated in the appendix.

For the next detection problem, the rules are quite different in

the sense that most of them are conditional rules.

°.

"

p

m"

.

'.4



5. Signal Detection for Problem C (2-sample)

For this problem it is assumed that data from two processes with

laws in Q(uo) are being received. The PN situation entails the equality

of the two laws, which is equivalent to the equality of the mean functions

SIp o and B2U o .

PN A4 =g (i.e. 81 0.8) vs N + S 41 AQ2

5.1 Sampling Plan I (Type I Censoring) Let {N(t)} and {M(t)} be

the two independent NHPP processes and {W I and {Wr1 be their respectiver r

waiting times. Observation of both processes is in the time interval

[O,T*]. The data is then (following Section 2.5)

Z =[n; W,., W m; W* WI

where n = N(T*), m = M(T*).

N(T*) and M(T*) are the M-S-S's for 1 1 and 82, respectively. They

are independent with N(T*) - P 0 ( 1 o(T*)) and M(T*) - Po(B2Vo (T*)).

Hence,

Lepta 5.1.1 Under PN, and conditionally, given N(T*) + M(T*) = N,

N(T*) - B(N, ).

The "natural" detection rule is then

Detection Rule C.I.I Decide N + S iff N(T*) < c or > c2 , where

c and c2 are the appropriate percentiles of a B(N, ) distribution.

This detection rule is, as usual, illustrated by a numerical example

in the appendix.

. -.... . .
_'LJ6.
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For the second sampling plan, the detection rule is based on an

F-distribution.

5.2 Sampling Plan II (Type II Censoring) For this plan the data is

Z. = [WI , ... W; W ... , W], i.e. one observes the first n waiting

times of {N(t)} and the first m waiting times of {M(t)). Then, one has

Lemma 5.2.1 Under PN, n o(W F(2n,2m).
nllo(w*)

The "natural" detection rule here is then

Detection Rules C.II.1 Decide N + S iff no(Wn) < f or.> f where

n u (W*) 1 2, hr

f and f are appropriate percentiles of an F(2n,2m) - distribution.

For the next two sampling plans, the detection rules are based on

conditional binomial distributions as in Section 5.1 above.

5.3 Sampling Plan III (Regular Sampling) The M-S-S's for the

81 and 82 are N(nA1 ) and M(mA2 ), respectively (Section 2.3).

Further, it is immediate that

Lemm 5.3.1 Conditionally, given N(nA1 ) + M(m 2 )N,

N(nA) - B(N,p), where p =

uo(nA1 ) + uo(mA2)

[Note: If AI = A2 and m = n, then p .]

The detection rule is then

Detection Rule C.III.I Decide N + S iff N(nAI) < a1 or > a2

(where a1 and a2 are appropriate percentiles of the B(N,p) - distribution).

.4
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An analysis rule is derived for equal-distance sampling.

5.4 Sampling Plan IV (Equal-Distance Sampling) The data here is

z = [N(tl), ... , N(tn ) M(t9) ... • M(tm)] and the M-S-S for 81 and 82

are N(tn ) and M(tm), respectively.

The detection rule is, then,

Detection Rule C.IV.1 Decide N + S iff N(tn) < bI or > b (where
n - 1

b1 and b2 are appropriate percentiles of the B(n,p) - distribution),
• o(t n

with N = N(t) + M(t ) and p =0 (I

on o tm)

The final detection rule for this signal detection problem is also

based on a conditional distribution. However, this conditional distribution

is not binomial.

5.5 Sampling Plan V (Same Shape Sampling) The two independent

stochastic processes of interest are {N(t)} and {M(t)} with mean functions

Sl o(.) and 82o(. ), respectively. One introduces two independent

NHPP's {N*(t)} and {M*(t)}, which are independent of the original processes,

and which have waiting times {Wr} and {Vr}, respectively.

The data here is then

n

From Section 2.5 and some straightforward derivations, one concludes

Theorem C.5.1 (i) N(W*) and M(V*) are the M-S-S's for and 82

respectively. (ii) Under PN, P{ N(w*) = s I N() + M(V*) = k

= (n + s-l) (m + k-s-l) [(n + k - I =P n, m, k) where N = n + m.
s k-s k

.'

""""4 " -4""''' -". -" " , ', - , """".' -, ,""" ." -'.." ' - - " - "", '"--. - -.



- 22 -

On the basis of this result, the detection rule becomes

Detection Rule C.V.1 Decide N + S iff N(W*) < c or > c2, where
c 1l

E P(sl n, m, k) + Z P (sI n, m, k) a c.
s=O 

S=C 2

°,.

"1

,I

A -. S .- - - -

' ° .
S. * .. .S S .
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6. Problem D (Constant Intensity Ratio)

This detection problem is closely related to the previous problem.

Essentially, for Problem C, PN entailed the equality of the intensities

of two independent NHPP's. Here, PN entails that the intensity of the

first process be a fixed constant multiple of the intensity of the second

process.

Under such circumstances, the data vectors and the M-S-S's for the

various sampling plans are the same as in Section 5; and the detection

*rules are closely related to those of Section 5. For that reason, these

rules will be listed with a minimum of discourse.

PN 1 Y0 2  vs N+ S :81Yo82

' 6.1 Sampling Plan I (Type I Censoring)

Detection Rule D.I.I (See Rule C.I.I) Decide N + S iff

N(T*) < a1 or > a2, where a1 and a2 are appropriate percentiles of

YO
the B(N,p) - distribution, with N = N(T*) + M(T*) and p = Y+

6.2 Sampling Plan II (Type II Censoring)

Detection Rule D.II.l (See Rule C.II.l) Decide N + S iff

mYouo(W
-:- < fl or > f2, where the f's are the appropriate percentilesn lj(w*)4 n

m

"* of the F(2n,2m) - distribution.

/% " ." .- ",*** " *'. .'. .7 i C -. - .* .-- . -.". .. .. i ,', ..-. . . .. . -. . -. . ' -.- . . " -. - " . - . ,



- 24 -

6.3 Sampling Plan III (Regular Sampling)

Detection Rule D.III.1 (See Rule C.III.1) Decide N + S iff

N(nA1 ) < a or > a2' where a, and a2 are appropriate percentiles of

the B(N,p) - distribution, with N = n + id and 
p = Y o v0l ( mA )

YO U0 (ni1) + P m

6.4 Sampling Plan IV (See Rule C.IV.l) (Equal-Distance Sampling)

Detection Rule D.IV.1 Decide N + S iff N(tn) < b1 or_> b2 9

where b and b are appropriate percentiles of a B(N,p) - distribution,

with N = N(t ) + M(t m) and p Y Poo(tn
n M) n YOU 0(tn ) + 1,0(t M

6.5 Sampling Plan V (See Rule C.V.1) (Samne-Shape Samp~ling) The

detection rule for this sampling plan is quite different from the other

rules encountered up to this point. The crucial point here is that the

M-S-S's N(W*) and N(V*) are distributed N-B(n, 1 and N-B(m, 1

respectively under PN. Hence, their sum, when yo $ 1, is not distributed

as a Negative Binomial variable. One, hence, resorts to a likelihood

ratio procedure.

For the special case m = n = k, one has

Theorem 6.5.1 (i) The likelihood function is

Ylk; Y21' '' Y2k ) = (PlP2 ) q q2

where 1 and l IPr for r 1,2.
Pr +

* - . = 1 * r  q r

-g
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(ii) The unconditional maximum of L(y) is achieved for

N(Wk) 1-a M(V) 1-

+ and 2  = [ +

(iii) Under PN, p, = 2 + P and L(y) is maximized

forP = + x] and ^
2O + P2 (1-yo)

where x N (WyoJ-  ({[l o- - N(w)] 2  + 8 yo k- kNw*) + M(V)I}

- [i + o- k-1 N(w:)])

[l+ k ki
N-k-N((_ _-k-M(V)

'(iv) LMy, PI, p) = [I + -k- [l+

____ N(*) M(V*) M(V*)
k k k k

-N( W,_
(v) L(y, { = )[o P2 (l-yo)[( o*y + yo L }

• M(:) -k

P2 (1-y )] (k [(-Y 0 ) P2 + Yo]

From standard statistical derivations, it follows that

Theorem 6.5.2 under PN, S = - 2 In 2

(Y, PI' p2)

Therefore, the detection rule is

Detection Rule D.V.I Decide N + S iff 1* < ×1 (a).
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7. Signal Detection for Problem E: c-Sample

For this problem, one has data from c independent NHPP's

{N1 (t)}, {N2(t)), ... , {N (t)}. The laws of these processes,

'*" "'''c are all in Q(uo).

The detection problem is

.PN : 4 =A vs N + S :/r's are not all equal

(i.e. 81 = 82 = = 8c)

For this problem, the detection rules are much more tractable if the

sample "sizes" are "equal," in the appropriate sense, and this latter

condition will be assumed.

The data for the various sampling plans is as given:

Data for Sampling Plan I: W = [W, W2, ... , W , where the waiting

times are W =.(Wr l,  . Wrkr) and N (T*) = kr for r = 1, 2, ..., c,
'",r r r rr

i.e. each process is observed until time T*.

Data for Sampling Plan II: W = [W WI, where W = [W WrN
, w1  ,c.r l"' r

for r = 1, 2, ... , c; i.e. each process is observed until the Nth waiting time.

Data for Sampling Plan III: N = (N1, ... , N ] or Y = .. "' c ]

where N = [Nr (A ), N (2A ) , N r(kA )] and Y = Y Y r.]

r r ' r .r r ' rk'

with Yrs = N sA) - N ([s-lI]A) and Nr (0) = 0 for r = 1, 2, . c

and s = 1, 2, .. , k.
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Data for Sampling Plan IV: N = [N ... , Nc ] orY = [YI9 ... Yc]

where N [Nr(t), ... , N(t and Yr [Yrl' "' Yrk' wth

Yrs 2 Nr(t) - Nr(ts-l) and Nr(0) = 0 for r = i, 2, ..., c and

s = 1, 2, ... , k.

Data for Sampling Plan V: N = [NI, ... , N] or Y = [YI , Yc

where, N = [N(w* ) .. , N (W*,)], andY = [Yrl .9 Y
r r rl r rk .r rl rk

Y = N(W* ) - N ) and N 0) = 0 for r = 1, c and
rs rs r, s-i ""

s 1, 2, ... , k. Here, {Wl*)9 .... , {Ws I are waiting times of independent
is Cs

NHPP's each with mean function Uo(.) and independent of N1(t), ... , N c(t).

Based on data of the type above, one finds several detection rules

to be related.

Detection Rules D.I.I, D.III.1 and D.IV.l Decide N + S iff

* c i t = 1 2 = -1 2
S N C N I N]2 ih- > x2 l (1-a).rr c-I

-1
For Sampling lan I, I~l and IN N(*),Nk)adNt

respectively; and N =c N in each case.-. 1 r

For the Sampling Plan II, one employs Hartley's (1950) procedure

for homoscedasticity, which is applicable here since 28r~o(WrN) X2N

Detection Rule D.II.I Decide N + S iff

-1
[max {u0(Wrk)] [Mmn {u (W rk)] > h", the appropriate percentile of

r r

Hartley's distribution.
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The final detection rule is related to determining whether or not

c independent negative binomial random variables have distributions

with the same probability p (of success).

Based on the likelihood-ratio criterion, one derives

2

Detection Rule D.V.I Decide N + S iff L* > xc_l(l-a), where

L* 2ck ln(k+-z) -2c-z ln ( z ) 2 Z z ln( r

k + z r=l k + zr

' " 
-i C-Nr( );and c cEz

Z r rk r

One other detection rule is of some interest here.

Meelis (1974) considers a situation in which the N + S case involves

the {8r } consttuting a random sample from an appropriate continuous

distribution. Based on his work, one arrives at

c 2 *
Detection Rule D.V.2 Decide N + S iff E [N (W* )] > d ,

r=lr rk
c

where m = Z N (W* ) and d* = d* (a, c, m) (the appropriate percentile
1r rk

of Meelis' distribution).

'.,

*.:.j.>:*
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APPENDIX - Numerical Examples

[The calculations of the appendix were done by A. Mason.]

This appendix makes use of seven data sets. Those designated Data

" Set 1, 2, 3, 4 and S are simulated sets of data from NHPP's with

the indicated mean functions. The last two data sets are records of

seizures for two different epilepsy patients.

The examples are grouped by problem (designated by letters A, B,

C, D and E) and by sampling plan (Roman numerals I, II, III, IV and

V).

For example, "Case D.III." refers to Detection Problem D and

Sampling Plan III.

4_- .

1-0F
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Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5
p(t)=2.St2 P(t)=t2 p(t)=4t p(t)=O.5t2 j(t)=O.25t 2

1 0.6621 1.5370 0.2640 1.6407 1.8609
2 0.8156 1.8415 0.3535 3.1687 4.2283
3-. 4 1.1033 2.2670 0.8270 3.1843 4.974

5 1.3875 2.6718 1.7190 3.7499 7.4145
6 1.4569 2.9192 2.3334 3.8316 7.6608
7 1.6535 2.9655 2.7005 4.4190 8.8394
8 1.6554 3.3051 2.9981 4.7912 10.0257
9 1.7187 3.3359 3.0349 4.8704 10.7584
10 1.8768 3.6561 3.4578 5.1042 12.6299
11 2.1242 3.6623 3.8193 5.1537 12.8330
12 2.1813 3.8465 4.1066 5.3270 12.9096
13 2.2706 3.8716 4.2841 5.6595 14.0877
14 2.3851 3.9012 4.2980 5.8857 14.9650
15 2.4161 4.4260 4.3277 5.8861 15.1432
16 2.5016 4.4830 4.4119 6.4762 15.5248
17 2.5161 4.6552 4.9939 7.0334 15.9582
18 2.5183 4.7408 5.7613 7.0720 16.2997
19 2.5231 4.8441 6.1637 7.2839 17.2403[ 20 2.S745 4.8968 6.4948 7.3309 17.3774

" 21 '2.7927 4.9904 6.6S61 7.7717.6973

22 2..9971 5.0636 7.1748 7.7333 18.6457
23 3.0902 5.0779 7.2400 8.2574 18.5428
24 3.1346 5.0933 7.3192 8.5161 18.5877
25 3.1652 5.2479 7.4199 8.3744 18.8340
26 3.1985 5.4329 7.7230 9.0870 18.8848
27 3.2867 5.4493 7.7686 9.1491 19.1638
28 3.3588 5.4559 7.9864 9.2653 19.3535
29 3.4849 5.5021 8.3356 9.7845 19.7537
30 3.5187 5.6157 9.4819 9.9437 20.0240
31 3.5476 5.6721 9.7305 10.0824 21.1768
32 3.5925 5.7419 10.1198 10.2001 21.6865
33 3.8160 5.9278 10.3810 10.4780 21.7489

S34 3.8490 5.9652 10.5817 10.6291 22.21S6

35 3.9115 6.0453 10.8142 10.9366 22.5020
36 3.9896 6.1611 10.9833 11.4502 23.1747
37 4.0754 6.2578 11.1056 11.6886 24.3404
38 4.1004 6.3962 11.3623 11.8080 23.7653
39 4.1185 6.3982 11.6609 11.9752 24.7081
40 4.1229 6.4602 11.7117 12.0659 25.1715
41. 4.2126 6.5531 12.1708 12.2152 25.2280
42 4.2949 6.5856 12.9102 12.2362 25.3121
43 4.2966 6.5952 12.9625 12.3179 25.3591
44 4.3525 6.6012 13.6038 12.3855 25.7556
45 4.4296 6.6321 14.5538 12.4373 25.7794
46 4.4329 6.7129 15.2888 12.4553 26.0114
47 4.4472 6.7171 15.3994 12.4829 26.3572
48 4.5433 6.9320 15.4766 12.9268 26-6164
49 4.5572 7.0581 15.5336 13.0550 26.9873
O 50 4.5681 7.1849 15.5897 13.2268 27.1501



2

Epilepsy Patient 1

Start: 7:00 Stop: 19:00

SZR TIME DURATION (Sec)

1 7:23 3.3
2 7:3S 3.5
3 7:49 4.4
4 7:50 3.5
5 9:46 4.1
6 10:04 3.3
7 10:0S 2.6
8 10:22 3.0

49 10':48 5.2
10 10:50 2.8
11 10:58 3.6
12 12:46 3.4
13 14:10. 2.4
14 14:57 3.2
15 16:57 3.2
16 17:18 3.4
17 17:36 3.4
18 18:07 3.4

"4

"I

.

.4 ." , 4 ''...2 '';' .,. -,--. . .: .. %2 .. ...-... / . . - . 7. . . "- - -.. "-i-. .- L -.
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Epilepsy Patient 2

Start: 7:50 Stop: 19:50

SZR TIME DURATION (Sec)

1 8:00 2.8
2 8:21 2.2
3 8:S8. 17.2
4 9:02 16.2
s 9:14 13.8
6 9:15 14.8
7 9:18 22.8
8 9:22 17.4
9 9:30 18.8

10 9:44 2.2
11 9:49 17.6
12 10:31 3.4
13 10:36 14.8
14 10:37 6.3
15 12:16 1.5
16 12:58 15.2
17 14:S9 15.0
18 15:04 16..6
19 16:10 3.8
20 16:16 10.6
21 16:31 7.0
22 16:32 14.4
23 16:33 12.0
24 16:34 16.8
25 16:34 9.6
26 16:35 17.0
27 16:36 17.6
28 16:36 14.7
29 16:38 10.0
30 16:41 12.0
31 16:42 9.5
32 16:44 7.8
33 16:46 4.6
34 16:50 7.8
35 16:51 6.8

V 36 18:36 11.4
37 19:03 12.8

J,

"I

I'~ " ; - . : " ;':": ',T -• " " " ." ' '"" ' "
" ' "

" ."- - " " " " "
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Problem A: Class-fit, or Goodness-of-fit with Nuisance Parameter.

PN: L e 0 (11 vs. N + S: L 4 Q(pO)

where p0(t) = t2.

Case A.I: Observe N(t) until time T*. The data is of the form

Wi, W2, ... , Wk where k = N(T*).

Detector Statistics: (i) Kolmogorov-Smirnov

D= u k 10 (W.) " K-S(k)

O<z<l j=l 0  PN

(ii) Neyman-Barton
V - 1/2

V~ 2 1 1 T2 1/ 2
B [-, V (V -, -... p-' Vl - 1p2'3s. +. PN X

Vp -/p+l

where V - k V (T,)

and : (a)

r.rs

rs (r+s+l) (r+l) (s+l)

Detection Rules: (i) (A.I.1.) Decide N + S iff Dk > d

2(ii) (A.I.2.) Decide N + S iff B > x i, 1 -

-p.,
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For Data Set 1:

T* N(T*) = k DC
k (dk .01) Decide

3.00 22 0.17 0.337 PN

.- 4.S0 47 0.10 0.238 PN

B 2 C.V. Decide B C.V. Decide

(X2, 99) (x2 99)

0.75 PN 0.81 PN
9.21 11.35

* 0.42 PN 0.84 PN

For Data Set 3:

T* NCT*) = k Dk C. Decide
k(dk,.Ol)

4.5 16 0.17 0.392 PN

10.00 21 0.32 0.28S N+S

B2  C2V" Decide B3 C2V Decide

(X2," 9 9) (x3 .
9

4.59 PN 5.16 PN
9.21 11.35

14.67 N+S 16.96 N S

-'T.
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Case A.II: Observe N(t) until Nth event. The data is of the

form W1, W 2 - .. p W N'

Detector Statistics:

(i) Kolmogc.ov-Smirnov

D =sup i N-i 110 (W.) z K-S(N-l)N-1s [z 1 1 0 w~ N- I-N- <Z< j=l PN

(ii) Neyman-Barton
V-1/2

2 X '1"2
B p (N-l)[V-1/2, V /3,... VP-l/p+1 2 / A

PNP

*p i/p+.1

where =r 1_ ____I and r
N - 1 1110 = (ars)
j=l

rs
0rs =(r s.1) (r~1) (s+l)

Detection Rules:

(i) (A.II.1.) Decide N + S iff D N-1 > d la

(ii) (A.II.2.) Decide N + S iff B > X -
p p 1-c

For Data Set 1 (N = 50) the following values are obtained:

Ci) D 49 = 0.06 Decide PN, since critical value is d 49. = 0.23

(ii) B2 - 0.60 Decide PN, since critical value is X 2 2
2 2,.99 02

B3 = 1.16 Decide PN, since critical value is 11.35
3 ~3,99 1.3
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For Data Set 3 (N = 50) the following values are obtained (same

critical values as above):

(i) D49 = 0.04 Decide PN.

(ii) B2 = 28.49 Decide N + S.

B = 29.86 Decide N + S.

Case A.III: Regular Sampling

Observe N(t) at regular intervals of time A, 2A, ... , kA

Data Set 1 (A ; 0.50) Data Set 2 (A = 1.00)

N(A) =0 N(A) =0

N(2A) =2 N(2A) =2

N(3A) = 6 N(3A) =7

N(4A) = 10 N(4A) = 14

N(SA) = 15 N(SA) = 21

N(6A) = 22 N(6A) = 34

N(7A) = 29 N(7A) = 48

N(8A) = 36

N(9A) = 47

-b.N(kA) 
2

k yj (kA)0 2
Detector Statistic: T = b N(kA) PN Xk-1

io (kA)

where y. = N(jA) - N([j - l]A) j = 1, .... k

and b. = 0 (jA) - 10 ([j - l]A)
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Detection Rule: Decide N + S iff T > 2llc

For Data Set 1 (k = 9, A = 0.50) we compute T = 1.35. Since the

- critical value i X .99 = 20.1 one decides PN.

Case A.IV: Equal-Distance Sampling

Observe N(t) at times tI, t2  ..., tk where the t's are chosen

so that 110(tj) - 0(tj 1 ) are equal for every j = 1, ..., k; to = 0.

2
If we assume P 0 (t) = t , a convenient choice for the observation

times are t. = Y- for j = 1, ..., k.
11 ( 0J

• ""[lao(tj) - lio(t. l) = 1 for all ij]

.5'

.

-,0

-

-t

.°,.. . . . . . *..*.---- - - - - - - - --- '- - ..
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Data Set 1 (k 10) Data Set 2 (k = 15) Data Set 4 (k = 15)

N(tl) = 2 N(tl) = 9 N(t I ) = 0

N(t 2) = S N(t 2 ) = 0 N(t 2 ) = 0

N(t 3) = 9 N(t 3 ) = 1 N(t 3 ) = 1

N(t4) ='10 N(t4) = 2 N(t4) = 1

N(ts) = 12 N(t 5 ) = 2 N(ts) = i

N(t6) = is N(t 6 ) = 4 N(t6) = 1

N(t 7 ) = 20 N(t 7 ) = 4 N(t 7 ) = 1

N(t 8) = 21 N(t 8 ) = s N(t 8 ) = 1

N(t 9) = 22 N(t 9 ) = 7 N(t 9 ) = 1

N(tl0) 24 N(tl0) = 7 N(tl 0 ) = 1

N(t 1 1 ) = 8 N(t 1 1 ) 3

N(tI 2 ) = 9 N(t 1 2 ) = 3

N(t 1 3 ) = 9 N(t 1 3 ) = 3

N(t 1 4 ) = 11 N(t 1 4 ) = 4

*q" N(tlS) = 12 N(tl5 ) = 6

Detector Statistic: T 1 ( -Y where
Y j=l J PN

Y. = N(t.) - N(t ).;.J j j-1

Detection Rule: Decide N + S iff T > 2
k -l, 1-a

For Data Set 1, Y = 2.4 and we get T = 6.77. Since the critical

2
value is X. = 21.67, one decides PN. For Data Set 2, Y = 0.80

and we get T 10.45. Since the critical value is X = 29.14,
14, .99

. .-. '., ..-- ',--.".'. "- .- ,- •"-.---.- ,. - , - ", . - " -- - -.- ' ,_, .. "~ " -'. - . - . -'- . .S',r .*.-



-, ' . .. . . ...' - .. .~ '.. , -. .~ - *, . , : . * * . ... . . . ..

- 10 -

11

one decides PN.

Case A.V.: Same-Shape Sampling.

Observe NHPP N(t) with mean function alp 0(t) at times w*, w*,

w* where the w*'s are the waiting times of an independent NHPP

N*(t) with mean function 110 (t). For these examples, Data Set I is

observed at the waiting times of Data Set 2 (p(t) = t2). Also, two
: ? t2

more independent processes with 'P(t) = t were generated to provide

times of observation for Dafa Sets 4 and 5.

Data Set 1 Data Set 4 Data Set S
=N(w*) 6 N(w) = 0 N(w*) = 0

N(w*) 9 N(w) = 1 N(w*) = 0

2~~= 2~~= 2

N(w) =12 N ~w) = l N(w) = o

N(w) is N~w*) = 4 ~*
44 4~*)

N(w*) = 20 N(w*) = 1 N(w*) = 1s s 5
N =w2) 21 N(w*)) = 1

6~ ~ 6 6~~)=
N(w*) =21 N(w) = 1 N(w) = 1

SN(w*)

N(w*) = 28 Nw) = 1 N(w*) = 1
N(w*) = 27 Nw*) = 1 N(w*) = 1

N~ )= 2 N(W*l}  C l
N(w10) = 32 N(w*2) = 3 N(w{2) = 110 ~101

N ~w = 32 N(w*3) = 3 N(w*3) = 1

N(wr4) = 33 N(wr4) = 3 N(w*4) = 1

N(w 3 ) = 34 N(w* ) = 3 N(w1 s) = 1
13 ~13 1

N~* 34 N(w* ) 4 N~ 4  =2
1 w 4) 14 (14

N(w*5  44 N(w* ) 4 N(w*S) = 2

N(w* 6 ) = 47 N(w*6) = 5 N(w*6) = 2

. . , . .. . . -1 6. . ' 1 6)., . S 1 6. - . q - . - . _ . . . . . , . - ' . . • "
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s (n. - kp(c) 2
Detector Statistic: T = 1 S-1

i=l kp(ci) PN

where n. = number of yi's in C. (one of s mutually exclusive

class covering the non-negative integers).

Detection Rule: Decide N + S iff T X2

s-l, l-a*

If we take s = 5, then for i = 1, ... , 5

Ci = {Sj + i - 1: j = 0, 1, 2, ... 1. Thus, C1 = {0, 5, 10, 15, ... },

C2 = {1, 6, 11, 16, ... } etc. For Data Set 1 we have k = 16 and

N (wr*6) 47 .4 W lohv
N(w* 6 ) =47. The MLE of 8 is 9= We 47

16 16

=~~~~~~~~ Cl* - '24adpC )  p i-1 ^N -1
p = 1 -) = 0.254 and A = Ai. (1-q l for i = 1, ... , 5.

The p(Ci) and the kp(C i) (with k = 16) are computed as:

1 1

pc 1) = 0.330 kS(Cl) = 5.280

p(C2) = 0.246 kp(C2) = 3.936

w' {3 ) = 0.184 kp(C3 ) = 2.944

pC=4) = 0.137 kp(C4) = 2.192

PC ) - 0.102 kp(C ) = 1.632

il"h ni  are:

n =7

n=5
n2

n3  0

n4 =4

n = 0kS

. n5"0:
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The computed statistic value is T = 6.915 and the critical value is

X2  = 13.277. Therefore, decide PN.
4,.99

Problem B: Goodness-of-fit.

PN: 1() = 80110 ()(= 0) vs. N + S: (.) a W O)

Case B.I.: Observe N(t) until time T*.

Detector Statistic: N(T*) P0(a010(T*))
PN

Detection Rule: Decide N + S iff N(T*) < a, or N(T*) > a2

where a1  and a2 are appropriate percentiles of the Poisson distribution.

For Data Set 1, consider the following detection problem:

PN: = 1, vs. N + S: B # 1

If T* = 3.00, then we observe N(3.00) = 22. Also, P(T*) = 0110(T*)
2

(1)(3.00) = 9.00. From Poisson tables, the critical values are

a1 = 2 and a2 = 18 (with FAR a = .011S). Thus, one decides N + S.

Case B.II.: Observe N(t) until Nth event.

Detector Statistic: T = 2a0WO(WN) 2

PN

Detection Rule: Decide N + S iff T < b or T > b where b

21 21
2

and b 2 are appropriate percentiles of the X 2N-distribution..

2
For Data Set 2, assume 110(t) = t

We observe W = 7.!849 and consider the following three detection

II
. . . .I

. . . .. . .
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(ii) PN: 1 vs. N + S: 1

(iii) PN: 8 0.5 vs. N + S: 8 0O.5

In each case the critical values are

2
b = =67.328 and
1 100,.005

2
b= X= 140.169.

We then compute

(i) T = 2(2)(7.1844)2 = 206.49 and decide N + S.

(ii) T = 2(1)(7.1849)2 = 103.25 and decide PN.

(iii) T = 2(.05)(7.1849) 2  51.62 and decide N + S.

Case B.III. : Regular Sampling (See data on page 7).

k (yj - bBo) 2 2
Detector Statistic: T = bj ao Al

j= PN

2Detection Rule: Decide N * S iff T >

For Data Set 1, we will consider:

SPN: 8= 2.5 vs. N +S: 8 2.5

* ..S * *.', ....



-14-

*(y. -bi BO 2

b j a (yj -bj o) 2  b .80

1 0 0.625 0.391 0.625

2 2 1.875 0.125 0.067

3 4 3.125 0.766 0.245

4 4 4.375 0.141 0.032

5 5 5.625 0.391 0.069

6 7 6.875 0.016 0.002

7 7 8.125 1.266 0.156

8 7 9.375 5.641 0.602

9 11 10.625 0.141 0.013

* T =1.811

Since the critical value is 2 2.088 one decides PN.

Case B.IV.: Equal-Distance Sampling (see data on page 9).

Detector Statistic: N(t k) P 0 ( (8 tk0)
PN

Detection Rule: Decide N + S iff N(tk) < a, or N (tk) 2a2

where a1 and a2 are appropriate percentiles of the Poisson distribution.

Suppose one is interested in testing

PN: 8 = 1 VS. N + S: 8 1

for Data Sets 1 and 2. Taking k =10, one has N 1(t 10) 24

*V.
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4.

and N2 (tl 0 ) - 7. Since t. = j, it follows that a 01(tk) = (1)(A¢h 2 =
2

10. From Poisson tables, the critical values are a1 = 2 and a2 = 20

(with FAR a = .0063), so one decides N + S for Data Set 1 and

PN for Data Set 2.

Case B.V.: Samie-Shape Sampling (see data on page 10)

Detector Statistic: N(w*) Iv NB(k,p) where p = [1 + 80 -

k PN

Detection Rule: Decide N + S iff N(w) <b 1  or N(w) > b2 ,

• are appropriate percentiles of the negative Binomial distribution.

Consider the following problem:

PN: 1 = vs. N S: 1 # 1

For Data Set 1, we observe N(w6 47. Thus k = 16 and p + -

To compute critical values, we must find b and b2 such that

P(x <b) = and P(x>b) = - where X "' NB(16, ). A corrected
1 -2 2'

(Gram-Charlier) Poisson approximation will be used (see Johnson and Kotz,
b -1 P

Discrete Distributions, pg. 129). P(X < bl) " P(y < b1) 2(1 + P) P(Y = b1)

where N = 16, P = P = 1 and Y OU P0 (NP). Thus,

b - 16
p(X < b1 ) P(y <b 1 ) 4 P(Y =b 1 )

where Y "' P 0(16).

From Poisson tables,

......
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' 6 - 16 .06
P(X < 6) .0040 - - 1(0026) .01054

so b1 = 6 with approximate tail probability .0lOS.

To find b2, we must satisfy:

P(X >b 2) =1- P(X <b - 1) 2

or P(X<b 2 - 1) = 1 -

(b2 -. )-NP

P(X.<b2  -2 2(1 + P) P(Y=b 2 -1)

where N, P and Y are defined as above. Thus,

P(X < 28) " .9978 - 3(.0019) = .9921

so b2 = 29 with approximate tail probability .0079.
°22

The critical values are therefore bI =6 and b2 = 29 with

FAR a = .0184. Since we observed N(w*6) = 47, decide N + S.
16

Problem C: Two-sample

PN: L1 = L2  vs. N + S: L1 # 2U81B 2) 1 Bl 2 )

Case C.I.: Observe N(t) until time T*.

Detection Statistic: Conditionally given N(T*) + M(T*) = N,

N(T*) " B(N, 1/2) (under PN)

Detection Rule: Decide N + S iff N(T*) < c1  or N(T*) > c2,

a7

.9

9,
A°

.' o o , -, ° ,, ° - - - - - - - , ° . * . ° ,. . ° . . - - . , . .

-" S./" , - _- . " ," , " " " " " ' " r ""*' ' - " ' " " ' '' " " " ""*1 ' , ' . .",
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9.,'

can be determined using the Normal approximation to the Binomial.

C1 = N(1/2) - z a/2 'N(I/2)(1/2)

c2 = N(1/2) + z / N(/2)(1/2)

If Data Sets 1 and 2 are observed until T*.= 3.00, we arrive at

N(T*) = 22 and M(T*) = 7. For a = .01

c = 29(1/2) - 2.576 Y(29(1/2)(1/2) = 7.56

c 2 = 29(1/2) + 2.576 129(1/2)(1/2) = 21.44

Since N(T*) = 22, one decides N + S.

Case C.II.: Observe N(t) until Nth event.

mil o (Wn)
Detector Statistic: T =n^i(W*) "N F(2n, 2m)

0mPN

Detection Rule: Decide N + S iff T < F or
(2n, 2m, a,/2)

For Data Sets 1 and 2 assume

Li , L2 Q e(10 and p0 (t) = t 2 .

Taking n = 40 and mi - 50 we find:

W = 4.1229 and W = 7.1849.

40 

so
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- Thus, T 50(41229) 0.412.
40(7.1849)2

Since the critical values are F 80,100,.00- 0.70 and F 80,100,.99= 1.41

decide N + S.

Case C.III.: Regular Sampling

Detector Statistic: Conditionally given

N(nA1) + M(mA2) = N, N(nA1) B(N,p) (under PN)

Where p, 110 (nA1)

W0 0(nA1) +. PO0(A2)

Detection Rule:. Decide N + S iff' N(nAI) < c. or N(nA1) > c2,

where c1  and c2  can be determined using the normal approximation

to the Binomial:

c = Np- Za/2  ,,fp(l -p)

c2 = Np + 'a/2  "Wp(I - p

* If Data Sets 1 and 2 are observed (with n = 9, A = 0.50, m f 7,

A = 1.00) we arrive at N(nA1 ) = 47 and M(mA2) = 48. Thus,

N N(nA1) + M(mA 2 ) =47 + 48 = 95 and

,""PO (nA 1) (4.5) 2Pi =n += M 0.29

0 o 1)  0 o 2) (4.5)2 + (7.0)

9.
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C= (95)(0.29) - (2.576) V(95)(0.29)(0.71) = 16.36

c2 = (95)(0.29) + (2.576) 95(O.29)(0.71) = 39.20

Since N(nA1 ) = 47, one decides N + S.

Case C.IV.: Equal-Distance Sampling

Detector Statistic: Conditionally given

N(tn) + M(tm) = N, N(tn) "iB(N,p)

where

11 (t)

p = fiiUotN) + Uo(t')

Detection Rule: Decide N + S iff N(tn) < b or N(tn) > b
n 1 n 2

where b and b2 can be determined by the Normal approximation to the

Binomial.

b = Np - za/ 2  p(l -p)

b2 = Np + za/2  'ip(l -p)

For Data Sets I and 2, with n = 10 and m = 15, we observe

N(t10) = 24 and M(ti5 ) = 12. Since Uo (t) = t2 and t. = we have

P UO (t 10) (7,o) 2 10 0.

= 'o(t 1 0 ) + 0(t15) -( ) 2 + (712 - 0.4

Thus (for a = .01),

.4L

. ..•. -
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I

b 1 = (36)(.4) - 2.576 /36(.4)(.6) = 6.83
,11

b2 = (36)(.4) + 2.576 V35(.4)(.6) = 21.97

Since N(tl0) = 24, one decides N + S.

Case C.V.: Same-Shape Sampling

Detector Statistic: Conditionally given

N(W*) + M(Vm*) = k, N(W*) "u F*
n mn PN

where

P {N(W ) =.sjN(W*) + M(V*) = k} = 
"

Detection Rule: Decide N + S iff N(W*) < c* or N(W*) > c* where
n 1 n 2

c* and c* are the largest and smallest non-negative integers such that

c*-l= n+ (* =k
1 PF.[N(W*) s IN(W* ) + M(Vm)  k]

-s=O m 2

k
I PF*[N(Wn) = sIN(Wn) + M(V*) = k]

s=c*+l
2

For Data Sets 4 and 5 we observe N(W*6) = S and M(V*6) = 2, so

k N(W) + M(V*6) = 7. To compute critical values c* and c*:
1 W 6) 16 copt vaue
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15l)(22) l ~ 0301 7

[17'S44

Thus, fo FAR a-07 h rtclvlusaec n * 6

Since N(W*6  S , decide PN.

"16

Problem D: Constant Intensity Rate.

PN: Y S N S
1 0 2 5 N 0 2:~

Case D.I.: Observe N(t) until time T*.

* Detector Statistic: Conditionally gi'en

-,N(T) + M(T*) N, N(T*) B(Np) (under PN)

YO
where p 

==.1

Detection Rule: Decide N + S iff N(T*) <c or M(T*) >c

where c 1  and c 2  are determined as in Case C.I, replacing p = 1/2

YO___ 2.5
with p 1 Suppose we take = 2.5, then p = 1 + 0.71.

Using Data Sets 1 and 2, consider the following problem:

PN: "t) = (2.5)iM vs. N + : 1  # A(2.5) 2 t

As before wI lObserve N(T) 2nd 2M(T* 7 f3

AsbfrweoreN(T*) 22an M(T*) 7 for N(T* 3.00.){ndr
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The critical values are computed below: (a =.01).

C, 2(0.71) - 2.576 129(0.71)(0.29) = 14.45

= 29(0.7l)-+ 2.576 2-9(O.71)iO.29) =26.98

Since NCT*) =22, one decides PN.

Case D.I1.: Observe N(t) until N4th event.

Detector Statistic: T F(2n,(2m)

0 n PN

Detection Rule: Decide N + S iff T < F
(2n, 2m, a/2)

or > (2n, 2m, l-ct/2)

As in Case C.II, we observe W 40 4.29snoW 7.1849. If

Y 2.5, the computed value of the detector statistic is

T=50(2.5) (4.1229)2 .2
40(7.1849)2

Since the critical values are F 80102.O 0.70 and F 8010.9 1.41

decide PN.

Case D.III.: Regular Sampling

Detector Statistic: Conditionally given

N(nA) + M(MA) N, N(nA1)" B(N,p) (under P14)

1 2.
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,OY 1O (nAI

where p = y0 1J0(nAl)
Y0 IJ0 (nA 1 ) + P0(A2

Detection Rule: Decide N + S iff N(nAI) < cI or N(nAI) > c2,

* where cI  and c2  are computed as in Case C.III.

For Data Sets 1 and 2 we consider:

PN: 8I = (2.5)8. vs. N + S: #(2.5)

Again, N =95 and p= (2.5) (4.5)2 = 0.51.
(2.5)(4.5) 2 (7.0)

- Thus, (for a = .01)
-°..

c (95)(.Sl) - (2.576) .vr95(.S1)(.49) = 35.75

c2 = (95)(.51) + (2.576) 095(.51)(.49) = 60.80

Since N(nA 47, one decides PN.

Case D.IV.: Equal-Distance Sampling

Detector Statistics: Conditionally given

9-

* N(t) + M(t) N, N(t) B(N,p)
_ nPN

" where

Y0 110 (tn )
p :YO(tn) + 110(tm)

............ '''. ""' "' - . ...........
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2 Detection Rule: Decide N + S iff N(t ) < b1  or N(t ) > b2

4 where b and b2 are determined as in Case C.IV. Suppose one wants

to test

PN: 1i = 2.582 vs. N + S: 1 2.582

for Data Sets 1 and 2. For n = 10 and m = 15, we observe

2
- N(tl0) = 24 and M(t15 ) = 12. Since 110 (t) = and t. = we have

iJ

' Y0110 (t10) (2.5) (vAT)2  (2.5) (10) = 0.63
y 1 - +P = (tls =-- (2.S) (10)+1

,..0 Y0 0 0 i (2. S) (-O2+(15-

Thus (for a = .01),

b 1 = 36(.63) - 2.576 V36(.63)(.38) 15.02

b2 = 36(.63) + 2.576 v/36(.63)(. 38) = 29.98

Since N(t1 0) = 24, one decides PN.

Case D.V.: Same-Shape Sampling

Here, two methods are available: Method 1, based on the likelihood

ratio and Method 2, using a normal approximation to the Binomial distri-

bution. Sampling Plan V is slight.ly modified for Method 2. Instead of

generating two independent "noise" processes to provide times of observa-

tions, we observe the two processes of interest at the waiting time of a

single independent same-shape process.

"'4

* ... I
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Method 1 (LH ratio)

Detector Statistic: L = -2 log L 0 X2
1 PN

where

- N(W*) - M(V*)
L k 1 k k kLI_ ) ( 1 ) C _ ) ( •_

1 + Y1 1 . 1 11 + Y2.

where

N(W*)
-l. = k

M(V )

Y2= k p

N CWr) L 2k ( - +( )
k p 1p)

[YO + (I - Yo)P] W .

and

(3yO+y.2 y 1 .-1) + /_ 3 0 +. 2 yO+y'-1)
2  yo[l-yo.y 2 (1-y0 )]

2[ - .2(l --."21%0 - 1 - 2. I  - 0O)

An obvious requirement is for 0 < p <1 , and in many cases (i.e.,

* only 1 root on [0,1]) the decision whether to use ".+1" or "-"

in the above formula can be based on this. In the case of two roots on

[0,1], further investigation is needed.

.5 p - .-".
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_ Detection Rule: Decide N + S iff L > X2  Consider the1,1l-a"

following detection problem.

PN: a1 = 5$4 vs. N + S: 504

where 81 and 84 are associated with Data Sets 1 and 4, respectively.

4 If we observe ".'(W*6) = 47, M(V*6) = 5, then
16 16

- 47

y'l. =6 = 2.94

and

- S

Y4. - - 0.31

We now compute:

p = 0.6665

L1 = 3.0919 x 10
-21

L0 = 1.6743 x 1021

Lo
L = -2 log = -2 log (1.8467) = 1.2268. Since the critical value is

X2

1,.95 = 3.84, deciee PN.

Method 2. (Binomial type)

N(w*) -yM(w
Detector Statistic: Z - k 0 kd ¢

/ [N(w*)+ M(w*)]Y0  PN

The above statistic is derived using the fact that, given N(w*) + M(wk) = N,

~ . q~ . .s A i ~ .j .. ,....* . ***-**,* * .* .~** .- ~ , ~...k
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C. Y0
N(w*) 1- B(N, Y) (for large N)

Detection Rule: Decide N + S iff Z > z or Z < -z

Again, consider the problem.

PN: 81 = 584 vs. N + S: a 8' 5$4

This time we observe both Data Sets 1 and 4 at the waiting times

from Data Set 2. If we take k = 16, w*6 = 4.4830 and our final

observations are

N(w*6) = 47 and M(w*6) f 7.

Thus,

Z = 47 5(7) =0.731
/(47 + 7)5

and we decide PN.

Consider two epileptics (patients 1 and 2) who have seizure times

given on pages 2-3. Assume the processes can be modeled as NHPP's

with mean function of the form

i(t) = .t0 s  i = 1,2

We want to test the following situation:

PN: 8 1 .0.258O2 vs. N + S: 81 f 0.25B2
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An independent NHPP with mean function p(t) = 0 is generated to

provide times of observation. For k = 50, we have

W = 239.40 min. = 4.0 hours
'.oso

and we observe

N(w*o) = 11 and M(w*) = 14

50 50

Thus,

Z = -+11 (0.25)14 = 3.0

/(11 + 14)(0.25)

and we decide N'+ S.

Problem E: c-sample

PN: L = ... = Lc  vs. N + S: L. 's' not all equal

1 c 1

4# Case E.I.: Observe N(t) until time T*.

c (N.(T*) -N) 2

Detector Statistic: T = I N -x' X2
j=1 N PN

where N 1 (T*).Sc .

Detection Rule: Decide N + S iff T > X2
Xll

Consider the case c = 4, where the four samples consist of the

points of Data Set 3 observed at time 0- 4.0, 4.0 8.0, 8.0- 12.0,
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12.0 - 16.0. Thus T* = 4.0 and we observe N (T*) = 11, N2(T*) = 17,

N3 (T*) = 12 and N4 (T*) = 10. (N = 12.5). The computed statistic

value is T = 2.32. Since the critical value is X2  11.35, one"~ 3,. 99 = 1.5 n

decides PN.

Case E.II.: Observe N(t) until Nth event.

maxt{p(WN):i =,... ci

Detector Statistic: T =max I0(WiN):1 = i... c

Detection Rule: Decide N + S iff T > b* where b* is the
S2 max

100(l - a)% pointof the m distribution (Hartley).
rain

If Data Set 3 is divided into 4 samples of 12 observations -each, we

have

w1 ,1 2 = 4.1066

w2 ,12 = 3.2126

w 3,12 = 3.6641

w4 ,1 2 = 4.4933

Since L (pO), i = 1, ..., 4 with V 0(t) = t we compute

4.4933
T = = 1.39863.2126

•! From tables of the S2 max distribution, a critical value of

b*= 7.6 is obtained (for a = .01' and 11 degrees of freedom).

",4

"I
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We therefore decide PN.

Case E.III.: Regular Sampling

k
Detector Statistic: T* = . T. % X (ck - k)

j=l JPN

c (N.(jA)-) 2 c
where T.= 1 ' and N.- 1  Ni(JA)i=I N. j i=I

J

Detection Rule: Decide N + S iff T* > X2

If, for Data Set 3, we take A = 0.50 and k = 10, NI(JA), N2(JA)

and N3 (jA) can be generated conS.ectutively:

JA N (j ) N2 (j A) N3(jA) N. T.

O.50 2 0 2 1.33 2.00

1.00 3 1 5 3.00 2.67

1.50 4 3 7 4.67 1.86

2.00 5 4 9 6.00 2.33

2.50 6 8 10 8.00 1.00

3.00 8 11 12 10.33 0.84

3.50 10 12 12 11.33 0.24

4.00 11 12 13 12.00 0.17

4.50 16 13 13 14.00 0.43

5.00 17 14 14 15.00 0.40

T* = 11.94

_ , -I -., . .. . -. _ - -- , -. - .,, .- -, . , . .. .. . .. . - . . . .



- 31 -

Since the critical value is X 20,.99 : 37.57 one decides PN.

Case E.IV.: Equal-Distance Sampling

Detector Statistic: W = -2 log 1

cI N i(tk )  c Ni(tk)
~ t)log ril + 2 1 N.(t kk)-2 i (k) ck i k) g 19 'k Ir -1i= PN

Detection Rule: Decide N + S iff W >'Xc-l, l-ce

-. Suppose we take k = 10 and c = 3 with Data Sets 1, 2 and 4 under

consideration. The' we have

N1 (tlO) =24, N2 (t.0) = 7 and N3 (t1 0) = 1

The statistic is computed as follows:

W = -2(32 32 224 24 + 7log

1+ 1 log(-fO=)] = 28.29

Since the critical value is X2  9.21, one decides N + S.

2,. 99

Case E.V.: Same-Shape Sampling

Detector Statistic: L = -2 log I X X2
PN c-1

where
-a
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xC X.
L= 2ck log(k *X) - 2cX log(-) + 2 1 X. log(k+ )k+X i=l

C

- 2k log(k + Xi)
,?i=l1

and X. N ( w *) .

Detection Rule: Decide N + S iff L > Xc-i,1-ct

Suppose we consider Data Sets 1, 4, and S with k = 16. We then

have

X= Nl(w* 6 ) = 47 X = 18.0

X= N2 (w* 6  = S

X = (w = 2 JR log(- ) = 541og(O. 5 3) = -34.34
k+ X

L = 2(3)(16) log(34.0) - 2(-34.34)

47 2+ 2[47 log ( ) + S log ( +- + 2 log ( - 2(16)[log 63 + log 21 + log 18]

= 338.53 + 68.69 - 50.68 - 322.50 = 34.04.

Since the critical value is X2 5.991 decide N + S.~~~~2, .95 = 59. eieN+S

.-
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